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NASH limits anti-tumour surveillance in 
immunotherapy-treated HCC

    
Hepatocellular carcinoma (HCC) can have viral or non-viral causes1–5. Non-alcoholic 
steatohepatitis (NASH) is an important driver of HCC. Immunotherapy has been 
approved for treating HCC, but biomarker-based stratification of patients for 
optimal response to therapy is an unmet need6,7. Here we report the progressive 
accumulation of exhausted, unconventionally activated CD8+PD1+ T cells in 
NASH-affected livers. In preclinical models of NASH-induced HCC, therapeutic 
immunotherapy targeted at programmed death-1 (PD1) expanded activated 
CD8+PD1+ T cells within tumours but did not lead to tumour regression, which 
indicates that tumour immune surveillance was impaired. When given 
prophylactically, anti-PD1 treatment led to an increase in the incidence of NASH–
HCC and in the number and size of tumour nodules, which correlated with increased 
hepatic CD8+PD1+CXCR6+, TOX+, and TNF+ T cells. The increase in HCC triggered by 
anti-PD1 treatment was prevented by depletion of CD8+ T cells or TNF neutralization, 
suggesting that CD8+ T cells help to induce NASH–HCC, rather than invigorating or 
executing immune surveillance. We found similar phenotypic and functional profiles 
in hepatic CD8+PD1+ T cells from humans with NAFLD or NASH. A meta-analysis of 
three randomized phase III clinical trials that tested inhibitors of PDL1 (programmed 
death-ligand 1) or PD1 in more than 1,600 patients with advanced HCC revealed that 
immune therapy did not improve survival in patients with non-viral HCC. In two 
additional cohorts, patients with NASH-driven HCC who received anti-PD1 or 
anti-PDL1 treatment showed reduced overall survival compared to patients with 
other aetiologies. Collectively, these data show that non-viral HCC, and particularly 
NASH–HCC, might be less responsive to immunotherapy, probably owing to 
NASH-related aberrant T cell activation causing tissue damage that leads to impaired 
immune surveillance. Our data provide a rationale for stratification of patients with 
HCC according to underlying aetiology in studies of immunotherapy as a primary or 
adjuvant treatment.

Potentially curative treatments for HCC, such as liver transplantation, 
tumour resection, or ablation, are limited to early-stage tumours1,2. 
Multikinase inhibitors and anti-VEGF-R2 antibodies have been approved 
for use in advanced HCC1,2. Immunotherapy, which is thought to activate 
T cells or reinvigorate immune surveillance against cancer, showed 
response rates of 15–30% in patients with HCC5,8–11. Nivolumab and 
pembrolizumab (PD1-directed antibodies) have been approved for 
treatment of HCC3,4, although phase III trials failed to reach their pri-
mary endpoints to increase survival1,10,11. A combination of atezolizumab 
(anti-PDL1) and bevacizumab (anti-VEGF) demonstrated increased 
overall and progression-free survival in a phase III trial, making it a 
first-line treatment for advanced HCC5. The efficacy of immunotherapy 
might be affected by different underlying HCC aetiologies, with diverse 
hepatic environments distinctly regulating HCC induction and immune 
responses6. Hence, we lack biomarkers that correlate with treatment 
response to allow patient stratification12,13. Non-alcoholic fatty liver 
disease (NAFLD) is an HCC-causing condition that affects more than 
200 million people worldwide14. Approximately 10–20% of individuals 
with NAFLD progress over time from steatosis to NASH14. Innate and 

adaptive immune-cell activation15–17, in combination with increased 
metabolites and endoplasmic reticulum stress16,18, are believed to lead 
to a cycle of hepatic necro-inflammation and regeneration that poten-
tially leads to HCC19–21. NASH has become an emerging risk factor for 
HCC1,14,19, which led us to investigate the effects of immunotherapy in 
NASH–HCC22–24.

Hepatic CD8+PD1+ T cells increase in NASH
We fed mice with diets that cause progressive liver damage and NASH 
over 3–12 months (Extended Data Fig. 1a–c), accompanied by an 
increase in the frequency of activated CD8+ T cells expressing CD69, 
CD44 and PD1 (Extended Data Fig. 1d–g). Single-cell mapping of leu-
kocytes showed altered immune-cell compositions in mice with NASH 
(Extended Data Fig. 1h, i) with strongly increased numbers of CD8+PD1+ 
cells (Fig. 1a, b, Extended Data Fig. 1j–m, o). Similarly, elevated CD8+ and 
PD1+ cells were found in a genetic mouse model of NASH17 (Extended 
Data Fig. 1n). Messenger RNA in situ hybridization and immunohisto-
chemistry showed that increasing PDL1 expression in hepatocytes and 
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non-parenchymal cells correlated with the severity of NASH (Extended 
Data Fig. 1p). Mass spectrometric characterization of CD8+PD1+ T cells 
from NASH-affected livers indicated enrichment in pathways involved 
in ongoing T cell activation and differentiation, TNF signalling, and nat-
ural killer (NK) cell-like cytotoxicity (Fig. 1c). Single-cell RNA sequencing 
(scRNA-seq) of cells expressing T cell receptor β-chains (TCRβ) from the 
livers of mice with NASH showed that CD8+ T cells had gene expression 
profiles related to cytotoxicity and effector-function (for example, 
Gzmk and Gzmm) and inflammation markers (for example, Ccl3) with 
elevated exhaustion traits (for example, Pdcd1 and Tox) (Fig. 1d, e). 
RNA-velocity analyses demonstrated enhanced transcriptional activ-
ity and differentiation from Sell-expressing CD8+ to CD8+PD1+ T cells 
(Extended Data Fig. 1q), indicating local differentiation. Thus, mice 
with NASH have increased hepatic abundance of CD8+PD1+ T cells with 
features of exhaustion and effector functions.

The high numbers of T cells in NASH suggest that anti-PD1-targeted 
immunotherapy may serve as an efficient therapy for NASH–HCC. 
Thirty per cent of C57BL/6 mice fed a choline-deficient high-fat diet 
(CD-HFD) for 13 months developed liver tumours with a similar load 
of genetic alterations to human NAFLD–HCC or NASH–HCC (Extended 
Data Fig. 2a, b). NASH mice bearing HCC (identified using MRI) were 
allocated to anti-PD1 immunotherapy or control arms (Fig. 1f). None of 
the pre-existing liver tumours regressed in response to anti-PD1 ther-
apy (Fig. 1g, h, Extended Data Fig. 2c). Rather, we observed increased 
fibrosis, unchanged liver damage, slightly increased incidence of liver 
cancer and unaltered tumour loads and sizes after anti-PD1 treatment 
(Extended Data Fig. 2 d–h). In anti-PD1-treated mice, liver tumour tissue 
contained increased numbers of CD8+/PD1+ T cells and high levels of 
cells expressing Cxcr6 or Tnf mRNA (Extended Data Fig. 2i–n). We found 
no regression of NASH-induced liver tumours upon anti-PDL1 immu-
notherapy (Extended Data Fig. 3a–f). By contrast, other (non-NASH) 
mouse models of liver cancer (with or without concomitant damage) 
reacted to PD1 immunotherapy with tumour regression25, suggesting 
that lack of response to immunotherapy was associated specifically 
with NASH–HCC (Extended Data Fig. 3g–i). Thus, NASH precluded 
efficient anti-tumour surveillance in the context of HCC immunother-
apy. Similarly, impaired immunotherapy has been described in mouse 
models with NASH and secondary liver cancer25,26.

CD8+ T cells promote HCC in NASH
As CD8+PD1+ T cells failed to execute effective immune surveillance, 
but rather showed tissue-damaging potential, we reasoned that CD8+ 
T cells might be involved in promoting NASH–HCC. We depleted 
CD8+ T cells in a preventive setting in mice with NASH but without 
liver cancer (CD-HFD fed for 10 months). CD8+ T cell depletion sig-
nificantly decreased liver damage and the incidence of HCC in these 
mice (Fig. 2i, Extended Data Fig. 4a–j, n). Similar results were obtained 
after co-depletion of CD8+ and NK1.1+ cells (Fig. 2i, Extended Data 
Fig. 4a–f, n). This suggests that as well as lacking immune surveillance 
functions, liver CD8+ T cells also promote HCC in mice with NASH. 
Next, we investigated the effect of anti-PD1 therapy on HCC devel-
opment in mice with NASH. Anti-PD1 immunotherapy aggravated 
liver damage (Fig. 2g, Extended Data Fig. 7c) and increased hepatic 
CD8+PD1+ T cells, with only minor changes in liver CD4+PD1+ T cells or 
other immune-cell populations (Extended Data Fig. 4a–o). Anti-PD1 
immunotherapy also caused a marked increase in liver-cancer inci-
dence, independent of changes in liver fibrosis (Fig. 2i). Mice lacking 
PD1 (Pdcd1−/−) showed an increase in incidence of, and earlier onset of, 
liver cancer, along with increased liver damage and elevated numbers 
of activated hepatic CD8+ T cells with increased cytokine expression 
(IFNγ, TNF) (Extended Data Fig. 5a–g). In summary, CD8+PD1+ T cells 
triggered the transition to HCC in mice with NASH, probably owing 
to impaired tumour surveillance and enhanced T cell-mediated tis-
sue damage27. Despite a strong increase in CD8+PD1+ T cells within 

tumours, therapeutic PD1- or PDL1-related immunotherapy failed to 
cause tumour regression in NASH–HCC.

We used an immune-mediated cancer field (ICF) gene-expression 
signature associated with the development of human HCC28 to 
understand the tumour-driving mechanisms of anti-PD1 immuno-
therapy. Preventive anti-PD1 treatment was strongly associated with 
the pro-tumorigenic immunosuppressive ICF signature (for exam-
ple, Ifng, Tnf, Stat3, Tgfb1), capturing the traits of T cell exhaustion, 
pro-carcinogenic signalling, and mediators of immune tolerance 
and inhibition. Depletion of CD8+ T cells led to significant down-
regulation of the high-infiltrate ICF signature and diminished TNF 
in non-parenchymal cells (Extended Data Fig. 5h, i). Gene set enrich-
ment analysis (GSEA), mRNA in situ hybridization, and histology of 
tumours developed in NASH mice that were treated prophylactically 
with anti-PD1 corroborated these data, showing increased CD8+ T cell 
abundance and enrichment for genes involved in inflammation-related 
signalling, apoptosis, and TGFβ signalling (Extended Data Fig. 5j–l). 
Anti-PD1 treatment triggered the expression of p62 (Extended Data 
Fig. 5m), which has been shown to drive hepatocarcinogenesis29. Array 
comparative genomic hybridization identified no significant differ-
ences in chromosomal deletions or amplifications between tumours 
from anti-PD1-treated mice or control mice (Extended Data Fig. 5n). In 
summary, hepatic CD8+PD1+ T cells did not cause tumour regression 
during NASH, but rather were linked to HCC development, which was 
enhanced by anti-PD1 immunotherapy.

We next analysed the hepatic T cell compartment for correlations 
with inflammation and hepatocarcinogenesis. Comparison of CD8+PD1+ 
T cells with CD8+ T cells by scRNA-seq showed that the former showed 
higher expression of genes associated with effector function (for exam-
ple, increased Gzma, Gzmb, Gzmk, Prf1; reduced Sell, Klf2), exhaus-
tion (for example, increased Pdcd1, Tox; reduced Il7r, Tcf7) and tissue 
residency (for example, increased Cxcr6, low levels of Ki-67) (Extended 
Data Fig. 6a–c). Notably, there was no difference in the transcriptome 
profiles of CD8+PD1+ T cells in NASH mice after anti-PD1 immunotherapy 
(Extended Data Fig. 6c), indicating that the number of T cells rather than 
their functional properties were changed. RNA-velocity blot analyses 
corroborated these data (Fig. 2a, Extended Data Fig. 6d–f). Similar pat-
terns of markers (for example, IL7r, Sell, Tcf7, Ccl5, Pdcd1, Cxcr6, and 
Rgs1) correlated with latent time and overall transcriptional activity in 
NASH mice that received either treatment (Fig. 2a, b, Extended Data 
Fig. 6e, f). Mass spectrometry-based analyses of CD8+ or CD8+PD1+ 
T cells isolated from NASH mouse livers confirmed these findings 
(Fig. 2c, Extended Data Fig. 6g).

We characterized the transcriptome profiles of PD1+CD8+ T cells 
by uniform manifold approximation and projection (UMAP) analysis 
of high-parametric flow-cytometry data, dissecting the CD8+PD1+ 
and CD8+PD1− subsets (Fig. 2d). This revealed that CD8+PD1+ cells 
expressed high levels of effector (for example, Gzmb, Ifng, Tnf) and 
exhaustion markers (for example, Eomes, Pdcd1, Ki-67low). In particular, 
CD8+PD1+TNF+ cells were more abundant upon anti-PD1 treatment 
(Fig. 2e). Convolutional neural network analysis and manual gat-
ing validated this result (Fig. 2f, Extended Data Fig. 6j, k). CD8+PD1+ 
T cells were non-proliferative in anti-PD1-treated NASH mice; this 
result was supported by in vitro experiments, in which anti-PD1 treat-
ment led to increased T cell numbers in the absence of proliferation 
(Extended Data Fig. 6l, m). Notably, CD8+PD1+ T cells from NASH 
mice showed reduced levels of FOXO1, which indicates an enhanced 
tissue-residency phenotype30, potentially combined with boosted 
effector function, as indicated by higher calcium levels in CD8+PD1+ 
T cells (Extended Data Fig. 6n, o). Single-cell RNA-seq analysis also 
showed that CD8+PD1+ T cells from NASH mice had a tissue residency 
signature (Extended Data Fig. 6b). Thus, upon anti-PD1 immuno-
therapy in NASH mice, CD8+PD1+ T cells accumulated to high numbers 
in the liver, revealing a resident-like T cell character with increased 
expression of CD44, CXCR6, EOMES and TOX and low levels of CD244 
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expression, but lacking expression of TCF1/TCF7, CD62L, TBET, and 
CD127 (Extended Data Fig. 6p–u). In summary, anti-PD1 immuno-
therapy increased the abundance of CD8+PD1+ T cells with a residency 
signature in the liver.

To investigate the mechanisms that drive the increased NASH–HCC 
transition in the preventive anti-PD1 treatment-setting, we treated 
NASH-affected mice with combinations of treatments. Both anti-CD8–
anti-PD1 and anti-TNF–anti-PD1 antibody treatments ameliorated liver 
damage, liver pathology and liver inflammation (Fig. 2g, Extended 
Data Fig. 7), and decreased the incidence of liver cancer compared 
to anti-PD1 treatment alone (Fig. 2i). By contrast, anti-CD4–anti-PD1 
treatment did not reduce the incidence of liver cancer, the NAFLD 
activity score (NAS), or the number of TNF-expressing hepatic CD8+ 
or CD8+PD1+CXCR6+ T cells (Fig. 2g–i, Extended Data Fig. 7). However, 
both the number of tumours per liver and tumour size were reduced, 
suggesting that depletion of CD4+ T cells or regulatory T cells might 
contribute to tumour control (Extended Data Fig. 8a, b). The incidence 
of tumours was directly correlated with anti-PD1 treatment, alanine 
aminotransferase (ALT), NAS, number of hepatic CD8+PD1+ T cells, and 
TNF expression (Extended Data Fig. 8c–e). These data suggested that 
CD8+PD1+ T cells lacked immune-surveillance and had tissue-damaging 
functions27, which were increased by anti-PD1 treatment, possibly con-
tributing to the unfavourable effects of anti-PD1 treatment on HCC 
development in NASH.

Augmented CD8+PD1+ T cells in human-NASH
We next investigated CD8+ T cells from healthy or NAFLD/NASH-affected 
livers. In two independent cohorts of patients with NASH, we found 
enrichment of hepatic CD8+PD1+ T cells with a residency phenotype (by 
flow cytometry and mass cytometry) (Fig. 3a, b, Extended Data Fig. 9a–j, 
Supplementary Tables 1,2). The number of hepatic CD8+PD1+ T cells 
directly correlated with body-mass index and liver damage (Extended 
Data Fig. 9b). To investigate similarities between mouse and human 
T cells from livers with NASH, we analysed liver CD8+PD1+ T cells from 
patients with NAFLD or NASH by scRNA-seq. This identified a gene 
expression signature that was also found in liver T cells from NASH 
mice (for example, PDCD1, GZMB, TOX, CXCR6, RGS1, SELL) (Fig. 3c, d, 
Extended Data Fig. 9k, l). Differentially expressed genes were directly 
correlated between patient- and mouse-derived hepatic CD8+PD1+ 
T cells (Fig. 3d). Velocity-blot analyses identified CD8+ T cells expressing 
TCF7, SELL and IL7R as root cells, and CD8+PD1+ T cells as their endpoints 
(Fig. 3e, f), indicating a local developmental trajectory of CD8+ T cells 
into CD8+PD1+ T cells. The amount of gene expression and velocity 
magnitude, which indicate transcriptional activity, were increased in 
CD8+PD1+ T cells from mice and humans with NASH (Fig. 3e). The expres-
sion of specific marker genes (for example, IL7R, SELL, TCF7, CCL5, 
CCL3, PDCD1, CXCR6, RGS1 and KLF2) along the latent time in patients 
with NAFLD or NASH differed from that seen in control participants 
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(Fig. 3g), and correlated with the expression patterns seen in CD8+ 
T cells from NASH mice (Fig. 3h). Thus, scRNA-seq analysis demon-
strated a resident-like liver CD8+PD1+ T cell population in patients with 
NAFLD or NASH that shared gene expression patterns with hepatic 
CD8+PD1+ T cells from NASH mice.

Different stages of NASH severity are considered to herald the devel-
opment of liver cancer31. Indeed, different fibrosis stages (F0–F4) in 
patients with NASH correlated directly with the expression of PDCD1, 
CCL2, IP10 and TNF, and the degree of fibrosis correlated with the num-
bers of CD4+, PD1+, and CD8+ T cells (Extended Data Fig. 10a–d, Supple-
mentary Table 3). Moreover, PD1+ cells were absent from healthy livers 
but present in the livers of patients with NASH or NASH–HCC, but the 
number of these cells did not differ with the underlying fibrosis level 
(Extended Data Fig. 10e, Supplementary Tables 4–6). Species-specific 
effects, such as the absence in mice of cirrhosis or burnt-out NASH  
(a condition found in some patients with NASH–HCC32), and their pos-
sible influence on immunotherapy may make it difficult to translate 
findings from preclinical models of NASH to human NASH. However, 
in tumour tissue from patients with NASH-induced HCC—treated with 
anti-PD1 therapy—we found increased numbers of intra-tumoral PD1+ 

cells compared to patients with HCC and viral hepatitis (Extended 
Data Fig. 10f). Thus, we found a shared gene-expression profile and 
increased abundance of unconventionally activated hepatic CD8+PD1+ 
T cells in human NASH tissue.

Lack of immunotherapy response in human NASH–HCC
To explore the concept of disrupted immune surveillance in NASH 
after anti-PD1 or anti-PDL1 treatment, we conducted a meta-analysis 
of three large randomized controlled phase III trials of immunothera-
pies in patients with advanced HCC (CheckMate-45911, IMbrave1505 
and KEYNOTE-24010). Although immunotherapy improved survival 
in the overall population (hazard ratio (HR) 0.77; 95% confidence 
interval (CI) 0.63–0.94), survival was superior to the control arm in 
patients with HBV-related HCC (n = 574; P = 0.0008) and HCV-related 
HCC (n = 345; P = 0.04), but not in patients with non-viral HCC (n = 737; 
P = 0.39) (Fig. 4a, Extended Data Fig. 10g, Supplementary Table 7). 
Patients with viral aetiology (HBV or HCV infection) of liver damage 
and HCC showed a benefit from checkpoint inhibition (HR 0.64; 95% 
CI 0.48–0.94), whereas patients with HCC of a non-viral aetiology 
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correlation of expression (b) along the latent time of selected genes in CD8+ 
T cells from mice with NASH. Latent time (pseudo-time by RNA velocity): dark 
colour, start of RNA velocity; yellow, end point of latent time. Kendall’s τ, gene 
expression along latent time. c, Principal component analysis (PCA) plot of 
hepatic CD8+ and CD8+PD1+ T cells sorted by mass spectrometry from TCRβ+ 
cells from mice fed for 12 months with ND, CD-HFD or CD-HFD and treated for 
8 weeks with anti-PD1 antibodies. d, e, UMAP representations showing 
FlowSOM-guided clustering (d, left), heat map showing median marker 
expression (d, right), and quantification of hepatic CD8+ T cells (e) from mice 

fed for 12 months with ND or CD-HFD and treated for 8 weeks with IgG or 
anti-PD1 antibodies. f, Quantification of CellCNN-analysed flow cytometry data 
for hepatic CD8+ T cells from mice fed for 12 months with CD-HFD and treated 
for 8 weeks with IgG or anti-PD1 antibodies. g, h, NAS evaluation (g) and 
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i, Quantification of tumour incidence in mice as in g, h. Details of sample sizes, 
biological replicates and statistical tests are given in Methods and Source Data. 
e–i, P values shown above brackets.
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did not (HR 0.92; 95% CI 0.77–1.11; P of interaction = 0.03 (Fig. 4a)). 
Subgroup analysis of first-line treatment compared to a control arm 
treated with sorafenib (n = 1,243) confirmed that immunotherapy was 
superior in patients with HBV-related (n = 473; P = 0.03) or HCV-related 
HCC (n = 281; P = 0.03), but not in patients with non-viral HCC (n = 489; 
P = 0.62; Extended Data Fig. 10h–j). We acknowledge that these results 
were derived from a meta-analysis of trials that included different lines 
of treatment and patients with heterogeneous liver damage, and did 
not differentiate between alcoholic liver disease and NAFLD or NASH. 
Nevertheless, the results of this meta-analysis supported the notion 
that stratification of patients according to the aetiology of their liver 

damage and ensuing HCC identified patients who responded well to 
therapy.

To specifically characterize the effect of anti-PD(L)1 immunotherapy 
with respect to underlying liver disease, we investigated a cohort of 
130 patients with HCC (patients with NAFLD n = 13; patients with other 
aetiologies n = 117) (Supplementary Table 8). NAFLD was associated with 
shortened median overall survival after immunotherapy (5.4 months 
(95% CI 1.8–9.0 months) versus 11.0 months (95% CI 7.5–14.5 months); 
P = 0.023), even though patients with NAFLD had less frequent macro-
vascular tumour invasion (23% versus 49%), and immunotherapy was 
more often used as a first-line therapy in these patients (46% versus 23%; 
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Fig. 4b). After correction for potentially confounding factors that are 
relevant for prognosis, including severity of liver damage, macrovascu-
lar tumour invasion, extrahepatic metastases, performance status, and 
alpha-fetoprotein (AFP), NAFLD remained independently associated 
with shortened survival of patients with HCC after anti-PD1-treatment 
(HR 2.6; 95% CI 1.2–5.6; P = 0.017, Supplementary Table 9). This finding 
was validated in a further cohort of 118 patients with HCC who were 
treated with PD(L)1-targeted immunotherapy (patients with NAFLD 
n = 11; patients with other aetiologies n = 107) (Supplementary Table 10). 
NAFLD was again associated with reduced survival of patients with 
HCC (median overall survival 8.8 months, 95% CI 3.6–12.4 months) 
compared to other aetiologies of liver damage (median overall sur-
vival 17.7 months, 95% CI 8.8–26.5 months; P = 0.034) (Fig. 4c). Given 
the relatively small number of patients with NAFLD in both cohorts, 
these data need prospective validation. However, collectively these 

results indicate that patients with underlying NASH did not benefit 
from checkpoint-inhibition therapy.

Liver cancer develops primarily on the basis of chronic inflamma-
tion. The latter can be activated by immunotherapy to induce tumour 
regression in a subset of patients with liver cancer. However, the iden-
tification of patients who will respond to immunotherapy for HCC 
remains difficult. Our data identify a non-viral aetiology of liver dam-
age and cancer (that is, NASH) as a predictor of unfavourable outcome 
in patients treated with immune-checkpoint inhibitors. The better 
response to immunotherapy in patients with virus-induced HCC than 
in patients with non-viral HCC might be due to the amount or quality 
of viral antigens or to a different liver micro-environment, possibly one 
that does not impair immune surveillance. These results might also have 
implications for patients with obesity and NALFD or NASH who have 
cancer at other organ sites (for example, melanoma, colon carcinoma, 
or breast cancer) and are at risk for liver damage and the development 
of liver cancer in response to systemically applied immunotherapy. 
Overall, our results provide comprehensive mechanistic insight and 
a rational basis for the stratification of patients with HCC according 
to their aetiology of liver damage and cancer for the design of future 
trials of personalized cancer therapy.
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